High performance organic-inorganic perovskite-optocoupler based on low-voltage and fast response perovskite compound photodetector

نویسندگان

  • Dong Li
  • Guifang Dong
  • Wenzhe Li
  • Liduo Wang
چکیده

Organic-inorganic hybrid photodetectors attract considerable attention because they can combine the advantages of both organic and inorganic systems. Here, a perovskite compound with a broad absorption spectrum and high power conversion efficiency is used as a photosensitive layer in an organic/inorganic hybrid heterojunction photodetector with a high and fast response. The high sensitivity exceeding 10(4) is obtained at bias of 0-4 V. Using a tandem organic light-emitting diode (OLED) as the light source, we fabricated an optocoupler device. The optocoupler achieved a maximum photoresponsivity of 1.0 A W(-1) at 341.3 μWcm(-2) at an input voltage of 6 V. The device also exhibits rapid response times of τ(rise) ~ 20 μs and τ(fall) ~ 17 μs; as well as a high current transfer ratio (CTR) of 28.2%. After applying an amplification circuit, the CTR of the optocoupler increases to 263.3%, which is comparable with that of commercial inorganic optocouplers. The developed hybrid optocoupler thus shows great promise for use in photonics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Performance Near-IR Photodetector Using Low-Bandgap MA0.5FA0.5Pb0.5Sn0.5I3 Perovskite

Photodetectors with ultrafast response are explored using inorganic/organic hybrid perovskites. High responsivity and fast optoelectronic response are achieved due to the exceptional semiconducting properties of perovskite materials. However, most of the perovskite-based photodetectors exploited to date are centered on Pb-based perovskites, which only afford spectral response across the visible...

متن کامل

Solution-processed hybrid perovskite photodetectors with high detectivity.

Photodetectors capture optical signals with a wide range of incident photon flux density and convert them to electrical signals instantaneously. They have many important applications including imaging, optical communication, remote control, chemical/biological sensing and so on. Currently, GaN, Si and InGaAs photodetectors are used in commercially available products. Here we demonstrate a novel...

متن کامل

Novel application of hybrid Perovskite materials in grid-connected photo-voltaic cells

In this paper, the novel application of organic/inorganic perovskite hybrid materials isproposed for grid-connected Photo-voltaic (PV) cells. The perovskite hybrid cells attracted a lot of interest due to their potential in combining advantages of both components. Looking to the future, there is no doubt that these new generations of hybrid materials, born from the very fruitful activitie...

متن کامل

High Efficiency and High Open Circuit Voltage in Quasi 2D Perovskite Based Solar Cells

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com (1 of 7) 1604733 configuration is of the structure R2(CH3NH3)n–1MnX3n+1, where R is an organic group, M is a divalent metal, and X is a halide (Cl−, Br−, or I−). The number of perovskite layers are determined by the long organic groups separated by the MX6 layers.[8] In this work, quasi 2D perovskites were synthesized whic...

متن کامل

High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate.

A low temperature (<100 °C), flexible solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar org...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015